>> P.B-67
■支持する姿勢を変えた場合の変化(単位:µm)下表は、下部と中央部を支持した状態において測定した値を零として、中央部のみを支える』、横にして中央部を支える』、下向きで手で支える』等の支持方向の違いによる零点の変化の状態を示しています。下表の数値より、支持する位置により数値が変化する事から、実際に測定する姿勢と同じ姿勢で基点合せを行う事をお勧めいたします。(なお、表の数値は保証値ではなく実験値です。)支点位置下部と中央部を支える中央部のみを支える姿勢最大測定長(mm)3254255256257258259251025支点位置姿勢最大測定長(mm)3254255256257258259251025■アッベの原理ℓLεθR00000000-5.5-2.5-5.5-11.0-9.5-18.0-22.5-26.0横にして中央部を支える下向きで手で支える+1.5+2.0-4.50.0-9.5-5.0-14.0-5.0-4.5-10.5-10.0-5.5-19.0-35.0-27.0-40.0「測られるものと標準尺とは、測定方向において、一直線上に配置しなければならない。」というもので、例えば、左図のように特殊なマイクロメータの目盛の軸線上から測定子が離れている場合(R)、誤差(ε)が生じやすくなりますので、特に測定力については十分な注意が必要です。■フックの法則ある長さと断面を持つ物体に荷重を加えた場合、弾性限界内における伸び縮みを起す変位量についての法則です。■ヘルツの式平面、円筒面、球面がいろいろ組み合わされて押しつけられた場合の弾性限界内における両面間の近寄り量を表わした式で、測定の際に、測定力のために変形を起す量を知る上で必要な式です。材料は鋼とすると弾性係数:E=205(GPa)変化量:δ(µm)球または円筒の直径:D(mm)円筒の長さ:L(mm)測定力:P(N)a)球をはさんだ時δ1=0.823√P2/Db)円筒をはさんだ場合δ2=0.094×(P/L)3√1/D2δ2δPLøD2δ2δPSøD(a)(b)二平面間の球二平面間の円筒注:上記のグラフはマイクロメータのフレーム部分を素手で持ち続けた場合の温度変化によるフレームの伸びを表したグラフです。手で持って測定する場合は基点が変化しますので測定には注意が必要です。(なお、グラフの数値は保証値ではなく実験値です。)■温度変化による基準棒の伸び(200mm20℃に対して)31℃27℃21℃12345678910時間(分)時間(分)201510050伸び(µm)室温20℃の部屋で基準棒の端を手の平の温度が違う人達が握った場合に、時間変化に対してどのような伸びを示すかを実験したグラフです。このグラフから、直接基準棒を握って零点合わせせず、手袋をはめるか、防熱カバーの部分を軽く支えて基点合わせを行うように注意することが大切です。また一度膨張した基準棒はなかなか元の長さにまで戻らないのでその点も注意して測定することが大切です。(なお、グラフの数値は保証値ではなく実験値です。)■温度変化によるマイクロメータと基準棒の伸びの差0℃20℃10℃+3+2+10-1-2-3伸びの差(µm)125225325425525呼び寸法(mm)室温20℃の部屋でマイクロメータと基準棒を約24時間放置して温度の安定をはかり基準棒で基点調整を調整し、これを0℃、10℃の温度状態下において両方を約同一時間放置後基点を測定した結果の値を125〜525mmでの各サイズについて温度ごとに結んだグラフです。このグラフから、基点調整はマイクロメータと基準棒の両方を少なくとも数時間以上同一場所に放置する必要があります。(なお、グラフの数値は保証値ではなく実験値です。)B-67300200100502468101520時間(分)3014131211109876543210伸び(µm)B■温度変化による測定誤差